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Introduction
Alzheimer’s disease (AD) is widely recognized as the most preva-
lent form of dementia, accounting for 60–70% of cases globally. 
Its incidence is projected to increase due to the aging demographic 
trends worldwide.1 AD is a debilitating neurological condition 
characterized by a gradual decline in cognitive abilities, including 
memory loss and decreased logical reasoning skills. Over 55 mil-
lion individuals worldwide have dementia, with more than 60% 
living in low- and middle-income countries.2 Every year, about 10 
million new cases are reported. The deposition of amyloid-beta 
(Aβ) plaques and neurofibrillary tangles (NFTs) of hyperphos-
phorylated tau are hypothesized as the underlying pathologies 
of AD.3–5 Deposition of Aβ plaques results from the cleavage of 
a protein termed amyloid precursor protein (APP), with Aβ 42 
identified as potentially hazardous.6,7 Abnormal amounts of this 
naturally occurring protein gather between neurons in Alzheimer’s 
patients’ brains, forming plaques that damage cell function.8,9 Hy-

perphosphorylated tau detaches from microtubules and sticks to 
other tau molecules, generating threads that eventually unite to 
create tangles inside neurons, known as NFTs.10,11 These tangles 
impair synaptic transmission between neurons by interfering with 
the transport system inside the neuron.12

The International Classification of Diseases-10 identifies dif-
ferent types of AD-related dementia: early onset (familial AD), 
late-onset (sporadic AD), mixed or atypical, and unspecified. 
Familial AD is characterized by rapid disease progression, while 
sporadic AD progresses more gradually.13 The cut-off age for fa-
milial AD and sporadic AD is usually 65 years. The genetic com-
ponent of familial AD is well understood and heritable, unlike 
sporadic AD, which affects more than 95% of AD patients and 
remains poorly understood.14 This lack of understanding contrib-
utes to the poor prognosis and therapeutic challenges associated 
with sporadic AD.

While there was no cure for AD, several non-medical approach-
es aimed to support individuals with AD and potentially slow dis-
ease progression. These approaches focus on enhancing cognitive 
function, promoting overall well-being, and improving quality of 
life.15,16 For example, cognitive stimulation can be achieved by 
engaging in mentally stimulating activities such as puzzles, games, 
brain exercises or encouraging reading, storytelling, and discus-
sions. Regular physical activity walking, swimming, and gentle 
exercises can improve overall health and well-being. Another ap-
proach is encouraging a balanced and nutritious diet rich in an-
tioxidants, omega-3 fatty acids, and vitamins. Lifestyle changes, 
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such as maintaining social connections, engaging in music therapy 
and creative activities such as painting, crafting, ensuring a regular 
sleep routine and addressing any sleep-related issues, and creating 
a safe and supportive environment, may help manage the behavio-
ral and psychological symptoms associated with AD.

Researchers conducted various studies on animal models to bet-
ter understand AD and develop potential treatments or interven-
tions. These studies used substances to induce specific pathologi-
cal features associated with AD rather than inducing the disease as 
it naturally occurs in humans. Instead, researchers aimed to repli-
cate certain aspects of the disease process to study its mechanisms 
and test potential therapeutic approaches. Various approaches and 
agents are used in animal studies related to AD (Fig. 1). Transgenic 
mouse models in which researchers often use genetically modified 
mice that express human genes associated with AD, such as mutant 
forms of the APP or presenilin genes.13,17–19 These mice can devel-
op amyloid plaques and other pathological features of Alzheimer’s 
disease. Another approach is the Aβ injections, where synthetic or 
purified Aβ protein is injected into the brains of animals, usually 
rodents,20–23 leading to amyloid plaque formation and neuroinflam-
mation, mimicking aspects of Alzheimer’s pathology. Tau protein 
abnormalities are another hallmark of AD. Researchers may also 
use animal models that overexpress abnormal tau proteins or inject 
tau aggregates to study their role in the disease.24–26 Some stud-
ies investigate the effects of environmental toxins or chemicals, 
such as aluminium or certain pesticides, on the development or 
progression of Alzheimer’s-like pathology in animal models.27,28 
Along with Aβ and NFTs, chronic inflammation is a critical under-

lying factor in the pathogenesis of AD,29 and researchers have used 
agents to induce neuroinflammation in animals to study its impact 
on the brain and cognitive function.

This review provided an overview of the several inducing agents 
employed in animal models to simulate AD, including streptozo-
tocin, aluminium chloride, trimethyltin, lipopolysaccharide, and 
scopolamine, along with their underlying mechanisms. The discus-
sion briefly encompassed the outcomes of several investigations 
that employed these inducing approaches in AD development.

Inducing approaches for Alzheimer’s disease

Aluminium chloride (AlCl3)
Prolonged exposure or chronic administration of heavy metals to 
mice has been observed to induce significant toxicity, leading to 
the development of many diseases, including neurotoxicity. Most 
studies have focused on the effects of aluminium, among other 
heavy metals, on biological systems.30,31 Abnormally high quanti-
ties of aluminium are found in the brains of Alzheimer’s patients, 
which has toxicological consequences, including encephalopathy, 
bone disease, and anemia.32 It was documented that oxidative 
stress, cholinergic insufficiency, and the accumulation of Aβ and 
NFTs occurred in the brains of rats following oral administration 
of aluminium at a dosage of 300 mg/kg body weight.33 Oxidative 
stress and mitochondrial malfunction are the major causes in an 
AlCl3 model, manifested by blocking the NADH dehydrogenase 
enzyme in the electron transport chain of the cortical and hip-

Fig. 1. Various approaches and agents used in animal studies to induce AD. AlCl3: Aluminium chloride; Apo-E: Apolipoprotein E; Aβ-40: amyloid β-40; Bax: 
Bcl-2-associated X protein; G-CSF: granulocyte-colony stimulating factor; IL-1β: Interleukin-1 beta; MDA: malondialdehyde; NO: nitric oxide; p-tau: phospho-
rylated tau; ROS: reactive oxygen species; TNF-α: Tumor necrosis factor alpha; VEGF: Vascular endothelial growth factor.
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pocampal regions.34 In addition, neurodegeneration results from 
changes in neuroinflammatory mediators and proinflammatory cy-
tokines in an AlCl3 model.

Neuronal cell death may result from aluminium ion-induced 
calcium homeostasis dysregulation, which causes an aberrant in-
crease of Ca2+ in mitochondria and disrupts normal cellular physi-
ological processes. Aluminium ions can lead to the accumulation 
of Aβ and hyperphosphorylation of Tau proteins, resulting in neu-
ronal death in the brain.35

Z. Firdaus et al.36 examined the impact of Centella asiatica 
ethanolic extract on AlCl3-induced neurological disorders in rats. 
The study’s findings demonstrated that AlCl3 causes cognitive 
impairment (memory and learning deficits, anxiety, and reduced 
locomotion) as well as oxidative stress, cholinergic impairment, 
and histological changes in the brains of rats.36 Similarly, Zhao 
Y et al.37 2020 studied the neuroprotective potential of syringic 
acid on AlCl3-stimulated behavioral deficits and neuroinflamma-
tion in rat AD models. The results showed that AD rats displayed 
reduced memory and learning impairments, augmented short-term 
memory loss, and diminished locomotion activity.37 The syringic 
acid supplementation appreciably stabilized the AD rats’ neurobe-
havioral impairments. Furthermore, Chen X. et al.38 induced AD 
in Sprague Dawley rats by oral administration of 175 mg/kg of 
AlCl3 for 25 days to study the protective effect of ononin treatment 
on AD (Table 1).36–57 The result showed that ononin treatment ef-
fectively modulated the AlCl3-triggered behavioral alterations in 
AD animals. The levels of interleukin-1β (IL-1β), tumor necro-
sis factor alpha (TNF-α), p38 mitogen-activated protein kinases 
(p38MAPK), acetylcholine esterase, malondialdehyde (MDA), 
and nuclear factor kappa B (NF-κB) were suppressed, while the 
brain-derived neurotrophic factor (BDNF) and peroxisome prolif-
erator-activated receptor-γ (PPAR-γ) contents were elevated in the 
brain tissues of AD animals.38 Other studies used AlCl3 in doses 
of 17 mg/kg for four successive weeks and 50 mg/kg/day in rats 
to induce AD.58,59 Taken together, the variation in AlCl3 dose and 
duration of administration to induce AD necessitate further studies 
to determine the most suitable dose and route of administration.

Streptozotocin (STZ)
Streptozotocin (STZ), or 2-deoxy-2-(3-(methyl-3-nitrosoureido)-
D-glucopyranose), is a naturally occurring antibiotic produced 
by Streptomyces achromogenes and derived from glucosamine 
nitrosourea.60 The most widely used model for sporadic AD in 
rodents is based on the effects of STZ, which matches the spo-
radic form in humans.61 The intracerebroventricular (ICV) admin-
istration of STZ elicits a distinct influence on the central nervous 
system (CNS) without noticeable effects on peripheral regions.62 
Brain biochemistry, metabolism, and functions, including glucose 
uptake and energy consumption, oxidative tissue stress, choliner-
gic deficiency, and cognitive capacities, are severely and persis-
tently impacted by ICV treatment with STZ. These effects lead 
to hippocampus-dependent cognitive loss, including difficulties 
with spatial learning and memory, as well as neurodegeneration, 
inflammation, and synaptic malfunction.63 Moreover, STZ induces 
neuronal injury and hyperphosphorylation of tau, leading to the re-
lease of reactive oxygen species (ROS) and reactive nitrogen spe-
cies.64 In addition, the neuroinflammation associated with sporadic 
AD is related to changes in the number and shape of astrocytes and 
microglia in particular brain areas following STZ injection.65,66 
Overall, these features validate the relevance of animal models 
of Alzheimer’s disease, as loss of spatial memory and disorien-
tation are fundamental markers of the progressive cognitive de-

cline exhibited in AD patients. Various studies have used STZ to 
induce AD in rodents (Table 1).39–42 For example, A. Gáspár et 
al. demonstrated the effect of a high dose of STZ (4.5mg/kg) on 
the learning and memory of Long-Evans rats (23 and 10 months 
old)39 using the 5-choice serial reaction time task, the Morris wa-
termaze, and the “pot-jumping” exercise. The 5-choice serial re-
action time task(attention) and the pot jumping test (procedural 
learning) showed significant changes in young STZ-treated rats, 
while the phospho-tau/tau protein ratio in the hippocampus of 
aged rats showed a substantial increase. In contrast, cooperative 
(social) and competitive (visual) memory tests and Aβ levels in 
the hippocampus were not significantly different. Alvei M. et al.40 
studied the pharmacological effect of three doses of levetiracetam 
(50, 100, and 150mg/kg) on STZ-induced AD rats (3 mg/kg). The 
results of the passive avoidance and Morris watermaze tasks dem-
onstrated that levetiracetam (100 and 150 mg/kg) considerably re-
duced STZ-induced learning and memory deficits.

Trimethyltin (TMT)
Trimethyltin (TMT) is an organometallic potent neurotoxic com-
pound that promotes considerable neurodegeneration and neuronal 
cell death in the central nervous system in the cerebral cortex and 
hippocampus.42,43 TMT has been detected in a variety of water 
sources, including those used for human consumption, as well as 
in marine ecosystems and aquatic organisms. Environmental ex-
posures during plastic production and other industrial activities 
where plastic is heated account for most reported cases of TMT 
poisoning.67 Neuronal cell death results from TMT’s ability to 
disrupt neuronal membranes. TMT-induction induces intracellular 
Ca2+ overload, mitochondrial damage, and oxidative stress. In ad-
dition, TMT exposure can trigger neuroinflammatory responses, 
characterized by increased levels of pro-inflammatory cytokines 
such as TNF-α, IL-1β, and nitric oxide, and increased gene expres-
sion of the glial fibrillary acidic protein and activated microglia in 
the brain.68 Furthermore, TMT signals the development of several 
components critical to the pathophysiology of AD, including APP, 
presenilin 1, and others.43

However, it’s essential to clarify that while TMT can lead to 
cognitive impairments and neurodegeneration in animal models, it 
is not considered a direct causative agent for AD in humans. While 
TMT-induced neurotoxicity and cognitive impairments in animal 
models can provide insights into certain aspects of neurodegenera-
tion and memory deficits, AD is a complex and multifactorial dis-
ease with genetic, environmental, and age-related factors playing 
significant roles. TMT-induced damage does not replicate the full 
spectrum of AD pathology, including the aggregation of Aβ and 
tau proteins, hallmark AD features in humans.

Lipopolysaccharide (LPS)
LPS is a common non-genetically manipulated neuroinflammation 
model for AD. LPS is an endotoxin found in the cell walls of Gram-
negative bacteria, which can cause systemic inflammation, amyloi-
dogenesis, and neuronal cell death.69 It was hypothesized that LPS 
elevates Aβ levels, damages oligodendrocytes, and causes myelin 
destruction in the AD brain by acting on leukocyte and microglial 
TLR4-CD14/TLR2 receptors, triggering an NF-kB-mediated rise in 
cytokines.70 A dose-dependent response of activated microglia and 
astrocytes was seen following direct LPS infusion into the fourth 
ventricle of the brains of male rats.71 Neuroglial activation could be 
induced at dosages as low as 0.05 ng/h of LPS infusion, while the 
loss of choline acetyltransferase-positive cells in the basal forebrain 
was induced only at doses of 50 ng/h or higher.72
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Scopolamine
Scopolamine is a compound that blocks acetylcholine receptors, 
leading to cholinergic dysfunction and resulting in cognitive 
impairments reminiscent of those seen in AD.73 This drug inter-
feres with the cholinergic pathways in brain regions involved in 
cognition and memory.74 Recent research indicated that scopola-
mine causes the buildup of ROS, leading to oxidative stress and 
memory impairment. The cholinergic theory can be implemented 
through the intraperitoneal or ICV injection of scopolamine, 
which causes cognitive abnormalities similar to those seen in 
AD. Notably, rats show a twofold rise in Aβ protein levels and 
APP expression levels after six weeks of intraperitoneal admin-
istration of scopolamine. Additionally, the activity of tau kinase, 
which causes tau hyperphosphorylation, and the amount of pTau 
protein were increased.44 The scopolamine-induced model has 
the advantage of not requiring complicated surgical procedures, 
unlike the ICV model.

Aβ Injections
The accumulation of external amyloid plaques, intracellular NFTs, 
and a cholinergic deficiency are the main features of AD. In ro-
dent studies, Aβ peptide accumulation in the hippocampus has 
been linked to worse learning and memory due to alterations in 
hippocampal long-term potentiation. Dendritic spine and excita-
tory synapse loss have been related to Aβ oligomers and oxidative 
stress.75,76 Results from studies in which synthetic- Aβ 1-42 species 
were injected into various regions of the brains of non-transgenic 
rats were often unreliable because of a lack of genuine characteriza-
tion of the administered Aβ aggregates. Afterward, well-character-
ized hazardous soluble Aβ 1-42 species (oligomers, protofibrils, and 
fibrils) were ICV injected into the rat brain to create a more robust 
model. Studies of the distribution of fluorescently tagged Aβ 1-42 
showed that soluble Aβ species spread to all areas of the rat brain. 
Spatial memory was impaired in the Morris water maze test, and 
long-term plasticity was damaged in acute hippocampal slices from 
Aβ-treated mice after seven days.77 Shahidi S et al.75 used behavio-
ral and electrophysiological techniques to assess the protective ef-
fect of N-acetyl cysteine on learning and memory in an Aβ-induced 
AD model in adult male rats. Passive avoidance test step-through 
latency was shortened after intrahippocampal Aβ injections, and the 
amplitude and slope of excitatory postsynaptic potentials in the hip-
pocampal neuron population were also reduced. If Aβ-treated rats 
were also given N-acetyl cysteine, the deficits caused by Aβ injec-
tion were reduced compared to the Aβ-only group.75 Co-injection 
of Aβ with another inducing agent, such as ibotenic acid, has been 
reported,78,79 leading to significant neuronal death in the injection 
site and faraway regions, such as CA1, CA4, and the dentate gyrus 
compared to a single inducing approach.

D-(+)-Galactose
D-galactose, a reducing sugar, is an aldohexose found in many 
foods, including dry figs, honey, and milk products. Naturally oc-
curring amounts of aldohexose D-galactose are present in the brain 
and the rest of the body, with a maximum daily recommended 
amount of 50 g.80 Nevertheless, it is well-established that exceed-
ing the usual concentration of exogenous D-galactose can cause 
oxidative stress, apoptosis, and inflammation, producing aging ef-
fects in several organs, including the brain.81 Mitochondrial failure 
and elevated oxidative stress are significant indicators of brain ag-
ing. Long-term injections of D-galactose result in a rise in AGE, 
RAGE, AR, SDH, telomere length shortening, telomerase activity, 
BACE-1, and Aβ1-42.82,83 One of the underlying mechanisms pro-

posed is that when the amount of D-galactose rises, it is converted 
to H2O2 by the enzyme galactose oxidase, causing a drop in SOD. 
Subsequently, reduced Iron (Fe) reacts with the increased H2O2 to 
produce OH−.84 These ROS can harm neurons by impairing redox 
equilibrium and causing lipid peroxidation in cell membranes.

Several recent studies used D-Galactose combined with another 
agent, such as AlCl3 or Aβ25–35, to induce AD-like symptoms, in-
cluding cognitive and memory impairments, oxidative damage, 
and inflammation.35,45,85,86 D-galactose can accelerate the over-
production of ROS, and AlCl3 intervention can cause neurotoxic-
ity.45 The body’s metabolism of D-galactose and AlCl3 results in 
D-galactitol, which the organism fails to metabolize. This leads to 
an increase in osmotic pressure, disrupting the typical morphology 
of hippocampus neurons and causing a gradual decline in neuro-
logical function.45,87,88

Colchicine
Colchicine is a medication commonly used to treat gout and arthri-
tis. It works by reducing inflammation and pain. However, colchi-
cine has been associated with neurological side effects, including 
cognitive impairment and memory loss, which can resemble symp-
toms seen in AD.89 The exact mechanism by which colchicine 
might induce AD-like symptoms is not completely clear. However, 
proposed mechanisms include disruption of microtubule function, 
potential impact on inflammation in the brain, interference with 
mitochondrial function, contribution to oxidative stress, and pos-
sible disruption of the blood-brain barrier.46,90

Colchicine has been used for the induction of AD in animal 
models in several research (Table 1).46,91–94 It has been proposed 
that the inflammatory action could be caused by cycloxygenase-2 
(COX-2), prostaglandin E2 (PGE2), IL-1β, and TNF-α. The ex-
pression of COX-2 mRNA in dentate gyrus granule cells is sig-
nificantly upregulated, and morphological changes associated 
with cell death are observed in rats following intrahippocampal 
injection of colchicine.95 It’s important to note that no research has 
examined this model’s specific sequence of pathogenic events and 
cognitive impairment. As a result, whether the observed alterations 
in the colchicine-induced model align with the inflammatory hy-
pothesis of AD remains an open question.

Okadaic acid
Okadaic Acid (OA) is a marine toxin produced by certain types 
of dinoflagellates, and it is well-known for its inhibitory ef-
fect on protein phosphatases, particularly protein phosphatase 1 
and protein phosphatase 2A.96 The disruption of normal protein 
phosphorylation and dephosphorylation processes can have vari-
ous cellular effects, including alterations in the cytoskeleton, cell 
cycle progression, and apoptosis. In neurodegenerative diseases, 
disruptions in protein phosphorylation are often associated with 
the formation of abnormal protein aggregates, such as tau tangles 
in AD. Research has shown that OA causes cellular death and tau 
phosphorylation, produces intracellular ROS, and activates MAPK 
signaling.97 In addition, cultured hippocampus neuronal cells ex-
posed to OA increased Ca2+ through ionotropic excitatory amino 
acid receptors, resulting in neuronal cell death.98

To investigate the effect of IMM-H004 on OA-induced learn-
ing and memory deficits in rats, a prior study used 200 ng/5 µL 
of OA administered unilaterally via ICV injection.99 The results 
showed that OA-treated rats demonstrated substantial impairments 
in spatial memory in the Morris water maze test. In addition, the 
hippocampus showed considerable increases in tau phosphoryla-
tion, Aβ protein deposition, and cell death. Another study found 
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that rats that received a single ICV injection of OA (200 ng/10 µL) 
on both sides exhibited notable behavioral impairments, including 
nesting behavior, short-term working, image discrimination, and 
spatial discrimination memory.100 Moreover, the hippocampus and 
prefrontal cortex showed a substantial increase in the frequency of 
pT231-tau immunoreactive cells, along with other abnormalities 
such as an expanded cell body and highly stained cytoplasm. Fur-
thermore, a significant increase in the protein expression of pS396-
tau, pT231-tau, and pS202/205-tau and a decreased number of 
neurons in the hippocampus and prefrontal cortex were observed.

Ibotenic acid
Ibotenic acid is a naturally occurring amino acid found in cer-
tain mushrooms, particularly in species of the Amanita genus. 
Researchers use ibotenic acid to create lesions or induce specific 
patterns of neural damage in laboratory animals, allowing them 
to study the effects on behavior, cognition, or cellular processes. 
Research has demonstrated that ibotenic acid causes considerable 
neuronal death in the cortex, substantia nigra, striatum, and hip-
pocampus, as well as intense gliosis around the sites of neuronal 
death.101 Ibotenic acid shares structural similarities with gluta-
mate, an excitatory neurotransmitter, and is a potent N-methyl-
D-aspartate receptor agonist, resulting in sustained activation and 
excitotoxicity.102 The outcome is increased water entry into the 
neurons caused by osmotic lysis and an overabundance of chloride 
and calcium ions.103 Additionally, ibotenic acid affects cholinergic 
cells in the ventral pallidum and substantia innominate complex 
and causes neuronal death throughout the nucleus basalis of the 
Meynert complex. Research has shown that rats can experience 
neuroinflammation and neurodegeneration due to cortical cholin-
ergic dysfunction caused by ICV injections of ibotenic acid.102,104 
The proposed mechanism for neuroinflammation and neuronal cell 
death involves influencing both local microglia and protoplasmic 
astrocytes. The advantage of this toxin model is the similarities 
between the pathophysiology in AD models in rodents and the cho-
linergic situation in human patients. However, the invasive method 
and high mortality rate are two drawbacks of this model.

Future directions
Scientists are continually refining and developing new animal 
models that better recapitulate the complexity of AD, including 
the genetic and environmental factors contributing to the disease’s 
heterogeneity. It’s important to highlight that these studies aim not 
to induce AD in animals but to create models that recapitulate spe-
cific aspects of the disease’s pathology. Animal studies are essen-
tial for advancing our understanding of AD, identifying potential 
drug targets, and testing experimental treatments. However, find-
ings from animal studies must be interpreted cautiously, as they 
may not always translate directly to humans.

The complicated pathophysiology of AD means that there are 
currently no reliable models of early-stage AD. In the intermediate 
to late stages of AD, most models show that pathogenic events and 
cognitive impairment emerge rapidly. Most people with AD first 
experience mild cognitive impairment and subjective cognitive de-
cline before the disease progresses to definitive AD, which can take 
many years in humans. To better understand the early pathological 
changes associated with AD and to find potential treatments, fur-
ther animal models of mild cognitive impairment and subjective 
cognitive decline are required since late-onset sporadic AD is the 
most prevalent form of AD. These animal models should not only 
display clinical episodes comparable to actual AD but also undergo 

gradual cognitive deterioration over an extended period. Addition-
ally, some limitations require to be addressed in future research. 
The surgical techniques, dosage of the inducing agent, and the ef-
ficacy of the therapeutic molecule can differ among researchers. 
Repeated administration of the therapeutic molecule within animal 
models may not consistently yield the anticipated outcomes. While 
amyloid infusion may benefit therapeutic research, it fails to elu-
cidate the underlying causes and solely concentrates on the neu-
rotoxic effects induced by amyloid oligomers. Furthermore, the 
utilization of excitotoxins is not exclusive to cholinergic neurons 
in the basal nuclear projections into the cortex, thus not adequately 
depicting the observed pathology in AD. Overall, further research 
is necessary to establish the stability of the models in terms of con-
sistency and reproducibility.

Conclusion
AD is a progressive neurological condition, and its exact causes 
are still not fully understood. Aβ plaques and tau tangles are two 
aberrant proteins that accumulate in the brain of people with AD, 
causing cognitive decline and memory loss. While various studies 
and experiments have been conducted on animals to better under-
stand the disease, these studies typically involve genetic manipu-
lation or the administration of substances that mimic some of the 
pathological features of AD. These studies aim to gain insights 
into the disease’s mechanisms and develop potential treatments. 
Thus, these AD-inducing agents are helpful pharmacological tools 
to study, to some extent, the cellular and molecular changes related 
to AD pathogenesis. Further research is required to optimize the 
inducing dose and to discover models that can cover the full scope 
of AD pathogenesis.
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